Hamiltonian symmetries of the gauge theories in the light front

Olivera Mišković

Pontificia Universidad Católica de Valparaíso, Chile

Collaborators
Oriana Labrin, PUCV, Chile
Hernán González, UAI, Chile

[arXiv: 2302.xxxxx]

Ruđer Bošković Institute, Zagreb, Croatia, 21 February 2023

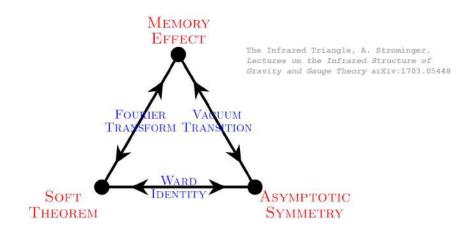
- 1 Infrared structure of gauge theories
- 2 Hamiltonian analysis of electromagnetism in the null foliation

- 1 Infrared structure of gauge theories
- 2 Hamiltonian analysis of electromagnetism in the null foliation
- f 3 New symmetry generator; Beyond U(1)

- 1 Infrared structure of gauge theories
- 2 Hamiltonian analysis of electromagnetism in the null foliation
- $\ensuremath{\mathfrak{g}}$ New symmetry generator; Beyond U(1)
- 4 Extension to Yang-Mills theory

- 1 Infrared structure of gauge theories
- 2 Hamiltonian analysis of electromagnetism in the null foliation
- $\ensuremath{\mathfrak{g}}$ New symmetry generator; Beyond U(1)
- 4 Extension to Yang-Mills theory
- 6 Discussion

IR region of theories with massless particles in asymptotically flat spaces



Olivera Mišković - February 2023 Light front EM (PUCV) 3 / 30

Motivation

Hamiltonian treatment of asymptotic symmetries

```
[Bondi, van der Burg, Metzner 1962; Sachs 1962]
```

BMS symmetry – infinite-dimensional asymptotic symmetry at the null boundary of 4D asymptotically flat spacetimes

Celestial holography

Duality between massless 4D asymptotically flat spacetimes and 2D CFT on the celestial sphere

Motivation

Hamiltonian treatment of asymptotic symmetries

```
[Bondi, van der Burg, Metzner 1962; Sachs 1962]
```

BMS symmetry – infinite-dimensional asymptotic symmetry at the null boundary of 4D asymptotically flat spacetimes

Celestial holography

Duality between massless 4D asymptotically flat spacetimes and 2D CFT on the celestial sphere

- Asymptotic symmetries in electromagnetism and Yang-Mills theory
- 2D realization of soft symmetries in electromagnetism

```
[He, Mitra, Porfyriadis, Strominger 2014;
Nande, Pate, Strominger 2018]
```

Extension to Yang-Mills theory

[Strominger 2014; He, Mitra, Strominger, 2016]

Vacuum degeneracy in gauge theories $(\omega \to 0)$

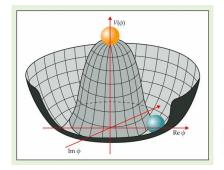
 \Leftrightarrow Enhancement of symmetries at the boundary of flat spacetime $(r \to \infty)$

Vacuum degeneracy in gauge theories $(\omega \to 0)$

- \Leftrightarrow Enhancement of symmetries at the boundary of flat spacetime $(r \to \infty)$
 - Goldstone modes, dominant low-energy excitations
 - Vacuum state $e^{S[\eta]}\ket{A}=\ket{A+\eta}$ \Leftrightarrow $\delta\ket{A}=\eta$

Vacuum degeneracy in gauge theories $(\omega \rightarrow 0)$

- \Leftrightarrow Enhancement of symmetries at the boundary of flat spacetime $(r \to \infty)$
 - Goldstone modes, dominant low-energy excitations
 - Vacuum state $e^{S[\eta]}\ket{A}=\ket{A+\eta}$ \Leftrightarrow $\delta\ket{A}=\eta$



Spontaneous symmetry breaking, J. Lykken, M. Spiropulu, The future of the Higgs boson, Physics Today 66, 12, 28 (2013)

Olivera Mišković - February 2023 Light front EM (PUCV)

What to expect at the null infinity?

What to expect at the null infinity?

- Realisation of a canonical analysis in a null foliation [Dirac 1949]
- The induced metric on a null hypersurface is degenerate
- Double-null foliation = 2 + 2 formalism in GR, complicated symplectic structure, difficult to quantize [d'Inverno, Smallwood 1980]
- Ashtekar variables in GR, simpler symplectic structure, but still difficult to quantize [Ashtekar 1986, 1987]

What to expect at the null infinity?

- Realisation of a canonical analysis in a null foliation [Dirac 1949]
- The induced metric on a null hypersurface is degenerate
- Double-null foliation = 2 + 2 formalism in GR, complicated symplectic structure, difficult to quantize [d'Inverno, Smallwood 1980]
- Ashtekar variables in GR, simpler symplectic structure, but still difficult to quantize [Ashtekar 1986, 1987]

Peculiarities of the light-front dynamics in the Minkowski space

- **Light-cone coordinates** $x^{\pm} = \frac{x^0 \pm x^3}{\sqrt{2}}$; Time coordinate $u = x^-$
- Increased number of isometries of the surface u = const. compared to $t = x^0 = \text{const.}$ (one more because of degenerated direction)

What to expect at the null infinity?

- Realisation of a canonical analysis in a null foliation [Dirac 1949]
- The induced metric on a null hypersurface is degenerate
- Double-null foliation = 2 + 2 formalism in GR, complicated symplectic structure, difficult to quantize [d'Inverno, Smallwood 1980]
- Ashtekar variables in GR, simpler symplectic structure, but still difficult to quantize [Ashtekar 1986, 1987]

Peculiarities of the light-front dynamics in the Minkowski space

- **Light-cone coordinates** $x^{\pm} = \frac{x^0 \pm x^3}{\sqrt{2}}$; Time coordinate $u = x^-$
- Increased number of isometries of the surface u = const. compared to $t = x^0 = \text{const.}$ (one more because of degenerated direction)
- Dispersion equation for a massive scalar

$$p^2 = m^2$$
 \Rightarrow Energy $E = p^- = \frac{(p^\perp)^2 + m^2}{2p^+}$

 \Rightarrow Consequences: $p^+>0$ and trivial physical vacuum, $p_{\rm vac}^{\mu}=0$

- Nontrivial effects on the light front are contained in the zero modes [Yamawaki 1998]
- Boundary conditions in the light front formalism

- Nontrivial effects on the light front are contained in the zero modes [Yamawaki 1998]
- Boundary conditions in the light front formalism
- Light-cone actions are first order in velocities [Steinhardt 1980]

Kinetic term
$$T=-rac{1}{2}\,\left(\partial\phi
ight)^2=\dot{\phi}\,\partial_+\phi-\left(
abla_\perp\phi
ight)^2$$

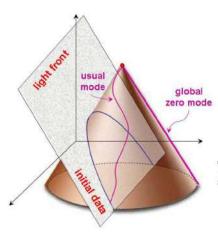
- \Rightarrow The canonical momentum $\pi = \partial_+ \phi$ is not invertible
- \star New constraint $\chi \equiv \pi \partial_+ \phi \approx 0$
- \bigstar It does not commute with itself, $\{\chi(x),\chi(x')\}_{u=u'}=-2\partial_+\delta(x-x')$
 - \Rightarrow Reduction of the phase space: elimination $\chi=0$

- Nontrivial effects on the light front are contained in the zero modes [Yamawaki 1998]
- Boundary conditions in the light front formalism
- Light-cone actions are first order in velocities [Steinhardt 1980]

Kinetic term
$$T=-rac{1}{2}\,\left(\partial\phi
ight)^2=\dot{\phi}\,\partial_+\phi-\left(
abla_\perp\phi
ight)^2$$

- \Rightarrow The canonical momentum $\pi = \partial_+ \phi$ is not invertible
- \star New constraint $\chi \equiv \pi \partial_+ \phi \approx 0$
- \bigstar It does not commute with itself, $\{\chi(x),\chi(x')\}_{u=u'}=-2\partial_+\delta(x-x')$
 - \Rightarrow Reduction of the phase space: elimination $\chi = 0$
 - Global zero mode in massless theories [Alexandrov, Speziale 2015]
- A massless particle worldline is parallel to the light front hypersurface, not determined by the initial data
- It has vanishing energy, $E=P^- o 0$ (Fourier momenta $P^-=0$, $P^\perp=0$)

Global zero mode



Global zero mode, First order gravity on the light front, S. Alexandrov, S. Speziale, Phys.Rev.D 91 (2015) 6, 064043

Null foliated reference frame

• Minkowski metric in D = 4 in the spherical coordinates (t, r, y^A)

$$M_4: ds^2 = -dt^2 + dr^2 + r^2 d\Omega^2$$

$$\mathbb{S}^2$$
: $d\Omega^2 = \gamma_{AB}(y) dy^A dy^B$

Null foliated reference frame

• Minkowski metric in D = 4 in the spherical coordinates (t, r, y^A)

$$M_4$$
: $ds^2 = -dt^2 + dr^2 + r^2 d\Omega^2$
 S^2 : $d\Omega^2 = \gamma_{AB}(y) dy^A dy^B$

• Time coordinate $u = t - \epsilon r$, $-1 \le \epsilon \le 1$

 $\epsilon = 1$ retarded time

 $\epsilon=0$ proper time of a massive particle

 $\epsilon = -1$ advanced time

Null foliated reference frame

• Minkowski metric in D = 4 in the spherical coordinates (t, r, y^A)

$$M_4: ds^2 = -dt^2 + dr^2 + r^2 d\Omega^2$$

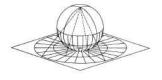
$$\mathbb{S}^2: \quad d\Omega^2 = \gamma_{AB}(y) \, dy^A dy^B$$

Stereographic projection, T. Apostol, Mathematical Analysis (1973)

 $\epsilon = 1$ retarded time

 $\epsilon=0$ proper time of a massive particle

 $\epsilon = -1$ advanced time



• Coordinates on \mathbb{S}^2 : stereographic projection $(\theta, \varphi) \to y^A = (z, \bar{z})$

$$z=\mathrm{e}^{\mathrm{i} arphi}\cot rac{ heta}{2}$$
 , $ar{z}=\mathrm{e}^{-\mathrm{i} arphi}\cot rac{ heta}{2}$

• Minkowski metric $\mathfrak{g}_{\mu\nu}$ in the coordinates $x^{\mu}=(u,r,y^A)$:

$$ds^{2} = -du^{2} - 2\epsilon dudr + (1 - \epsilon^{2}) dr^{2} + r^{2}d\Omega^{2} \qquad \sqrt{\mathfrak{g}} = r^{2}\sqrt{\gamma}$$

ullet \mathbb{S}^2 metric in the complex coordinates

$$\gamma_{AB} = \left(egin{array}{cc} 0 & \gamma_{zar{z}} \ \gamma_{zar{z}} & 0 \end{array}
ight), \quad \gamma_{zar{z}} = rac{2}{(1+zar{z})^2} = \sqrt{\gamma}$$

 \bullet Electromagnetic action in the background $\mathfrak{g}_{\mu\nu}$

$$I[A] = -rac{1}{4e^2}\int \mathrm{d}^4x\,\sqrt{\mathfrak{g}}\,F^{\mu\nu}F_{\mu\nu} \qquad (F_{\mu\nu} = \partial_\mu A_
u - \partial_
u A_\mu)$$

• Canonical momenta $\pi^{\mu} = -\frac{1}{e^2} \sqrt{\mathfrak{g}} F^{\mu\mu}$

 \bullet Electromagnetic action in the background $\mathfrak{g}_{\mu\nu}$

$$I[A] = -rac{1}{4e^2}\int \mathrm{d}^4x\,\sqrt{\mathfrak{g}}\,F^{\mu
u}F_{\mu
u} \qquad (F_{\mu
u} = \partial_\mu A_
u - \partial_
u A_\mu)$$

• Canonical momenta $\pi^{\mu} = -\frac{1}{e^2} \, \sqrt{\mathfrak{g}} \, F^{u\mu}$

In components:

$$\begin{array}{lll} \pi^{u} &= 0 & \dot{A}_{u} & \times \\ \pi^{r} &= \frac{r^{2}}{e^{2}} \sqrt{\gamma} \, F_{ur} & \dot{A}_{r} & \sqrt{} \\ \pi^{A} &= -\frac{1}{e^{2}} \sqrt{\gamma} \gamma^{AB} \left[(\epsilon^{2} - 1) F_{uB} - \epsilon F_{rB} \right] & \dot{A}_{B} & ? \end{array}$$

• Electromagnetic action in the background $\mathfrak{g}_{\mu\nu}$

$$I[A] = -rac{1}{4e^2}\int \mathrm{d}^4x\,\sqrt{\mathfrak{g}}\,F^{\mu\nu}F_{\mu\nu} \qquad (F_{\mu\nu}=\partial_\mu A_
u - \partial_
u A_\mu)$$

• Canonical momenta $\pi^{\mu} = -\frac{1}{e^2} \sqrt{\mathfrak{g}} \, F^{u\mu}$

In components: $\pi^u = 0$

$$\pi^{u} = 0 \qquad \qquad \dot{A}_{u} \times$$

$$\pi^{r} = \frac{r^{2}}{e^{2}} \sqrt{\gamma} F_{ur} \qquad \dot{A}_{r} \sqrt{\gamma}$$

$$\pi^{A} = -\frac{1}{e^{2}} \sqrt{\gamma} \gamma^{AB} \left[(\epsilon^{2} - 1) F_{uB} - \epsilon F_{rB} \right] \dot{A}_{B} ?$$

- The limit $\epsilon^2 \to 1$ is discontinuous
- The action in the light-cone ($\epsilon^2 = 1$) has an additional constraint

In the Bondi reference frame ($\epsilon^2 = 1$)

• Primary constraints

$$\pi^u \approx 0$$
, $\chi^A \equiv \epsilon \pi^A - \frac{1}{e^2} \sqrt{\gamma} \gamma^{AB} F_{rB} \approx 0$

In the Bondi reference frame ($\epsilon^2 = 1$)

- Primary constraints $\pi^u \approx 0$, $\chi^A \equiv \epsilon \pi^A \frac{1}{\epsilon^2} \sqrt{\gamma} \gamma^{AB} F_{rB} \approx 0$
- Total Hamiltonian [Dirac 1964]

$$\mathcal{H}_{T} = \frac{e^{2}(\pi^{r})^{2}}{2r^{2}\sqrt{\gamma}} + \frac{e^{2}\tilde{\pi}_{A}\pi^{A}}{2\sqrt{\gamma}} + \frac{\sqrt{\gamma}}{4e^{2}r^{2}}\tilde{F}^{AB}F_{AB} - A_{u}\partial_{i}\pi^{i} + \lambda_{u}\pi^{u} + \lambda_{A}\chi^{A}$$

- Hamiltonian multipliers $\lambda_u(x)$, $\lambda_A(x)$ incorporate constraints

In the Bondi reference frame ($\epsilon^2 = 1$)

- Primary constraints $\pi^u \approx 0$, $\chi^A \equiv \epsilon \pi^A \frac{1}{e^2} \sqrt{\gamma} \gamma^{AB} F_{rB} \approx 0$
- Total Hamiltonian [Dirac 1964]

$$\mathcal{H}_{T} = \frac{e^{2}(\pi^{r})^{2}}{2r^{2}\sqrt{\gamma}} + \frac{e^{2}\tilde{\pi}_{A}\pi^{A}}{2\sqrt{\gamma}} + \frac{\sqrt{\gamma}}{4e^{2}r^{2}}\tilde{F}^{AB}F_{AB} - A_{u}\partial_{i}\pi^{i} + \lambda_{u}\pi^{u} + \lambda_{A}\chi^{A}$$

- Hamiltonian multipliers $\lambda_u(x)$, $\lambda_A(x)$ incorporate constraints
- Canonical Poisson brackets $\left\{A_{\mu}(x),\pi^{\nu}(x')\right\}_{u=u'}=\delta^{\nu}_{\mu}\,\delta^{(3)}(x-x')$
- Evolution $\dot{\Phi}(x) = \{\Phi(x), H_T\}$

Symplectic matrix

$$\left\{ \chi^{A}(x), \chi^{B}(x') \right\} = \Omega^{AB}(x, x') \equiv -\frac{2\epsilon}{e^{2}} \sqrt{\gamma} \gamma^{AB} \partial_{r} \delta^{(3)}$$

Symplectic matrix

$$\boxed{\left\{\chi^A(x),\chi^B(x')\right\} = \Omega^{AB}(x,x') \equiv -\frac{2\epsilon}{e^2}\sqrt{\gamma}\gamma^{AB}\partial_r\delta^{(3)}}$$

- If Ω^{AB} is not invertible: χ^A are **first class** (generate symmetries)
- If Ω^{AB} is invertible: χ^A are second class (eliminate redundant fields)

Symplectic matrix

$$\boxed{\left\{\chi^A(x),\chi^B(x')\right\} = \Omega^{AB}(x,x') \equiv -\frac{2\epsilon}{e^2}\sqrt{\gamma}\gamma^{AB}\partial_r\delta^{(3)}}$$

- If Ω^{AB} is not invertible: χ^A are **first class** (generate symmetries)
- If Ω^{AB} is invertible: χ^A are **second class** (eliminate redundant fields)

One possibility

- Ω^{AB} is invertible because γ^{AB} is invertible $\Rightarrow \chi^{A}$ are second class
- ullet Reduced phase space $\chi^A=0$ [Goldberg 1991, Majumdar 2022]

Symplectic matrix

$$\left\{ \chi^{A}(x), \chi^{B}(x') \right\} = \Omega^{AB}(x, x') \equiv -\frac{2\epsilon}{e^{2}} \sqrt{\gamma} \gamma^{AB} \partial_{r} \delta^{(3)}$$

- If Ω^{AB} is not invertible: χ^A are **first class** (generate symmetries)
- If Ω^{AB} is invertible: χ^A are second class (eliminate redundant fields)

One possibility

- Ω^{AB} is invertible because γ^{AB} is invertible $\Rightarrow \chi^{A}$ are second class
- Reduced phase space $\chi^A=0$ [Goldberg 1991, Majumdar 2022]

Second possibility

- Ω^{AB} is invertible, but its inverse is not unique
- Ω^{AB} is infinite-dimensional matrix and it has zero modes

$$\int d^3x'\,\Omega^{AB}\,V_B' = -\tfrac{2\varepsilon}{\varepsilon^2}\,\sqrt{\gamma}\gamma^{AB}\partial_r V_B = 0 \quad \Rightarrow \quad \underset{\scriptscriptstyle \bullet \, \square \, P}{\longrightarrow} \quad \underset{$$

Olivera Mišković - February 2023 Light front EM (PUG

Symplectic matrix

$$\left[\left\{ \chi^{A}(x), \chi^{B}(x') \right\} = \Omega^{AB}(x, x') \equiv -\frac{2\epsilon}{e^{2}} \sqrt{\gamma} \gamma^{AB} \partial_{r} \delta^{(3)} \right]$$

- If Ω^{AB} invertible: χ^A are **first class** (generate symmetries)
- If Ω^{AB} not invertible: χ^A are **second class** (eliminate redundant fields)

One possibility

- Ω^{AB} is invertible because γ^{AB} is invertible $\Rightarrow \chi^{A}$ are second class
- ullet Reduced phase space $\chi^A=0$ [Goldberg 1991, Majumdar 2022]

Other possibility

- Ω^{AB} is invertible, but its inverse is not unique
- ullet Ω^{AB} is infinite-dimensional matrix and it has zero modes

$$\Rightarrow \chi^{A}_{(0)}(y)$$
 is first class constraint (r-independent part of the constraint)

Olivera Mišković - February 2023 Light front EM (PUCV) 14 / 30

Consistency conditions

Consistency conditions

Conservation of constraints during their evolution

$$\dot{\pi}^u = 0 \quad \Rightarrow \quad \chi = \partial_i \pi^i \approx 0 \quad \text{(differential Gauss law)}$$

$$\dot{\chi}^A = 0$$
 \Rightarrow differential equation in the multiplier

Consistency conditions

Conservation of constraints during their evolution

$$\dot{\pi}^u = 0$$
 $\Rightarrow \chi = \partial_i \pi^i \approx 0$ (differential Gauss law) $\dot{\chi}^A = 0$ \Rightarrow differential equation in the multiplier

• The multiplier λ_A is not fully determined

$$\partial_r \lambda_A = -\frac{\epsilon e^2}{2\sqrt{\gamma}} \partial_r \tilde{\pi}_A - \frac{1}{2r^2} \nabla^B F_{AB} + \frac{\epsilon e^2}{2r^2} \partial_B \left(\frac{\pi^r}{\sqrt{\gamma}} \right)$$
 $\lambda_A = \bar{\lambda}_A + \Lambda_A(y)$

- A free function $\Lambda_A(y)$ is due to the zero modes of Ω^{AB}
- $\bar{\lambda}_A$ determined part of λ_A

Summary of the constraints

Primary constraints:
$$\pi^u$$
, $\chi^A = \epsilon \pi^A - \frac{1}{e^2} \sqrt{\gamma} \gamma^{AB} F_{rB}$

Secondary constraint: $\chi = \partial_i \pi^i$.

Summary of the constraints

Primary constraints: π^u , $\chi^A = \epsilon \pi^A - \frac{1}{e^2} \sqrt{\gamma} \gamma^{AB} F_{rB}$

Secondary constraint: $\chi = \partial_i \pi^i$.

Nature of the constraints

Summary of the constraints

Primary constraints:
$$\pi^u$$
, $\chi^A = \epsilon \pi^A - \frac{1}{e^2} \sqrt{\gamma} \gamma^{AB} F_{rB}$

Secondary constraint: $\chi = \partial_i \pi^i$.

Nature of the constraints

- π^u first class, A_u is a multiplier in the Hamiltonian
- χ first class, differential Gauss law, $\pi^i = \sqrt{\gamma} \, {\sf E}^i$
- $\chi_{(0)}^A$ first class, r-independent part of the constraint
- $\chi^A_{(n)}$ $(n \ge 1)$ second class, coefficients of the Taylor expansion in 1/r
- We have to expand all the fields asymptotically in the vicinity of the boundary r = const → ∞.

Standard asymptotic conditions of the fields [Strominger 2014]

$$A_{u} = \mathcal{O}(\frac{1}{r}), \qquad A_{r} = \mathcal{O}(\frac{1}{r^{2}}), \qquad A_{A} = \mathcal{O}(r^{0}),$$

$$\pi^{u} = 0, \qquad \pi^{r} = \mathcal{O}(r^{0}), \qquad \pi^{A} = \mathcal{O}(\frac{1}{r^{2}})$$

• Boundary fields: $A_{(0)A}$, $\pi_{(0)}^r$

Standard asymptotic conditions of the fields [Strominger 2014]

$$A_u = \mathcal{O}(\frac{1}{r}), \qquad A_r = \mathcal{O}(\frac{1}{r^2}), \qquad A_A = \mathcal{O}(r^0),$$
 $\pi^u = 0, \qquad \qquad \pi^r = \mathcal{O}(r^0), \qquad \pi^A = \mathcal{O}(\frac{1}{r^2})$

• Boundary fields: $A_{(0)A}$, $\pi^r_{(0)}$

Summary

1^{st} class constraints	Parameters	Generators	Charges
π^u , $\chi=\partial_i\pi^i$ $\chi^A_{(0)}$	$\theta_u, \ \theta \\ \eta_A(y)$	$G[heta] \ S[\eta]$	$egin{aligned} Q[heta] \ Q_s[\eta] \end{aligned}$

• Smeared generators

Olivera Mišković - February 2023 Light front EM (PUCV) 17 / 30

• $G[\theta]$ generates standard gauge transformations, $\delta A_{\mu} = -\partial_{\mu}\theta$, because it is satisfied $\theta_{\mu} = -\dot{\theta}$ [Castellani 1974]

- $G[\theta]$ generates standard gauge transformations, $\delta A_{\mu} = -\partial_{\mu}\theta$, because it is satisfied $\theta_{\mu} = -\dot{\theta}$ [Castellani 1974]
- New symmetry generator $S[\eta]$ has an r-independent parameter $\eta_A(y)$ (to eliminate $\chi_{(n)}^A$, $n \ge 1$)

- $G[\theta]$ generates standard gauge transformations, $\delta A_{\mu}=-\partial_{\mu}\theta$, because it is satisfied $\theta_{u}=-\dot{\theta}$ [Castellani 1974]
- New symmetry generator $S[\eta]$ has an r-independent parameter $\eta_A(y)$ (to eliminate $\chi^A_{(n)}$, $n \ge 1$)
- Transformation law of the fields

$$egin{array}{lll} \delta_{ heta}A_{\mu} &= -\partial_{\mu} heta\,, & \delta_{\eta}A_{\mu} &= \epsilon\,\eta_{A}\,\delta_{\mu}^{A} \ & & \delta_{ heta}\pi^{\mu} &= 0\,, & \delta_{\eta}\,\pi^{\mu} &= rac{1}{e^{2}}\,\delta_{r}^{\mu}\sqrt{\gamma}\,
abla_{A}\eta^{A} \end{array}$$

- Improper transformations: $\theta_{(0)}$, η^A [Benguria, Cordero, Teitelboim 1977]
- \bigstar η^A acts on the boundary fields only

$$\delta_{\eta}A_{(0)A}=\epsilon\,\eta_A$$
 , $\delta_{\eta}A_{(n)A}=0$, $n\geq 1$ (similarly for π^r)

Olivera Mišković - February 2023 Light front EM (PUCV) 18 / 30

Improved generators and charges

Improved generators

$$egin{array}{ll} G_Q[heta] &= G[heta] + Q[heta] & (Q[heta] &= {
m surface\ term}) \ & S_Q[\eta] &= S[\eta] + Q_s[\eta] & (Q_s[heta] &= {
m surface\ term}) \end{array}$$

Differentiability

$$\begin{split} \delta G_Q[\theta] &= \int d^3x \, \left(\frac{\delta G_Q[\theta]}{\delta A_\mu} \, \delta A_\mu + \frac{\delta G_Q[\theta]}{\delta \pi^\mu} \, \delta \pi^\mu \right) \\ \delta S_Q[\eta] &= \int d^3x \, \left(\frac{\delta S_Q[\eta]}{\delta A_\mu} \, \delta A_\mu + \frac{\delta S_Q[\eta]}{\delta \pi^\mu} \, \delta \pi^\mu \right) \end{split}$$

Improved generators and charges

Improved generators

$$egin{array}{ll} G_Q[heta] &= G[heta] + Q[heta] & (Q[heta] &= {
m surface\ term}) \ & S_Q[\eta] &= S[\eta] + Q_s[\eta] & (Q_s[heta] &= {
m surface\ term}) \end{array}$$

Differentiability

$$\begin{split} \delta G_Q[\theta] &= \int d^3x \, \left(\frac{\delta G_Q[\theta]}{\delta A_\mu} \, \delta A_\mu + \frac{\delta G_Q[\theta]}{\delta \pi^\mu} \, \delta \pi^\mu \right) \\ \delta S_Q[\eta] &= \int d^3x \, \left(\frac{\delta S_Q[\eta]}{\delta A_\mu} \, \delta A_\mu + \frac{\delta S_Q[\eta]}{\delta \pi^\mu} \, \delta \pi^\mu \right) \end{split}$$

Charges

$$Q[\theta] = -\oint d^2y \,\theta \,\pi^r$$

$$Q_s[\eta] = \frac{1}{e^2} \oint d^2y \,\sqrt{\gamma} \,\eta^A A_A$$

- Infinite number of global charges (Laurent coefficients).

Charge algebra

- Reduced phase space: $G_Q[\theta] = Q[\theta], S_Q[\eta] = Q_s[\eta]$
- Abelian charge algebra

$$\{Q[\theta_1], Q[\theta_2]\} = 0$$

 $\{Q_s[\eta_1], Q_s[\eta_2]\} = 0$
 $\{Q[\theta], Q_s[\eta]\} = C[\theta, \eta]$

• Central charge $C[\theta,\eta]=rac{1}{e^2}\oint \mathrm{d}^2y\,\sqrt{\gamma}\,\eta^A\partial_A\theta
eq 0$

Charge algebra

- ullet Reduced phase space: $egin{aligned} G_Q[heta] = Q[heta], \ S_Q[\eta] = Q_s[\eta] \end{aligned}$
- Abelian charge algebra

$$\{Q[\theta_1], Q[\theta_2]\} = 0
 \{Q_s[\eta_1], Q_s[\eta_2]\} = 0
 \{Q[\theta], Q_s[\eta]\} = C[\theta, \eta]$$

- Central charge $C[\theta,\eta]=rac{1}{e^2}\oint \mathrm{d}^2y\,\sqrt{\gamma}\,\eta^A\partial_A\theta
 eq 0$
- ullet Holographic conjugate pairs on \mathbb{S}^2 [Donnay, Puhm, Strominger 2019]

$$\{Q[\theta], Q_s[\eta]\} = C[\theta, \eta] \quad \leftrightarrow \quad \{q, p\} = 1$$

 $Q[\theta]$ – conformally soft photon mode

$$Q_s[\eta]$$
 – Goldstone current

Mode expansion of the charge algebra

Laurent series

$$\psi(z,\bar{z}) = \sum_{n=-\infty}^{+\infty} \sum_{m=-\infty}^{+\infty} \frac{\psi_{nm}}{z^{n+h}\bar{z}^{m+\bar{h}}}$$

- The powers (h, \bar{h}) are related to the spin of the tensor ψ
- Scalars $\pi^r:(0,0)$
- Vectors $A_{z}:(1,0), \quad A_{\bar{z}}:(0,1)$

Mode expansion of the charge algebra

Laurent series

$$\psi(z,\bar{z}) = \sum_{n=-\infty}^{+\infty} \sum_{m=-\infty}^{+\infty} \frac{\psi_{nm}}{z^{n+h}\bar{z}^{m+\bar{h}}}$$

- The powers (h, \bar{h}) are related to the spin of the tensor ψ
- Scalars $\pi^r:(0,0)$
- Vectors $A_z:(1,0), A_{\bar{z}}:(0,1)$
- Charges

$$Q[\theta] = \sum_{n,m} \theta_{nm} G_{nm} \in \mathbb{R}$$

$$Q_s[\eta] = \sum_{n,m} (\eta_{nm} \bar{S}_{nm} + \bar{\eta}_{nm} S_{nm}) \in \mathbb{R}$$

Generators

$$G_{nm} = 4\pi^2 \, \pi_{1-n,1-m}$$
 $S_{nm} = -\frac{4\pi^2}{e^2} \, A_{-n,-m}$
 $\bar{S}_{nm} = -\frac{4\pi^2}{e^2} \, \bar{A}_{-n,-m}$

Algebra (non vanishing brackets only)

```
\{G_{nm}, S_{kl}\} = \kappa n \delta_{n+k,0} \delta_{m+l,0}
\{G_{nm}, \bar{S}_{kl}\} = \kappa m \delta_{n+k,0} \delta_{m+l,0}
```

• Level of the algebra: $\kappa = \frac{4\pi^2}{e^2}$

Algebra (non vanishing brackets only)

$$\{G_{nm}, S_{kl}\} = \kappa n \delta_{n+k,0} \delta_{m+l,0}$$

$$\{G_{nm}, \bar{S}_{kl}\} = \kappa m \delta_{n+k,0} \delta_{m+l,0}$$

- Level of the algebra: $\kappa = \frac{4\pi^2}{e^2}$
- Change of the basis: $(G_{nm}, S_{nm}, \bar{S}_{nm}) \rightarrow (R_{nm}, J_{nm}, \bar{J}_{nm})$
- Generalization of the Kac-Moody algebra

Abelian Kac-Moody subalgebras

• We obtain six Abelian KM algebras $\{j_n,j_m\}=\kappa n\,\delta_{n+m,0}$

Currents
$$j_n$$
 Levels
$$J_{n0}, J_{0n} \qquad \kappa, -\kappa$$

$$\bar{J}_{n0}, \bar{J}_{0n} \qquad -\kappa, \kappa$$

$$R_{n0}, R_{0n} \qquad \kappa, \kappa$$

- Non vanishing mixed brackets: $\{R_{n0},J_{m0}\}$, $\{R_{0n},\bar{J}_{0m}\} \neq 0$
- Each KM algebra is naturally generated by a current that is a holomorphic or anti-holomorphic function.

Abelian Kac-Moody subalgebras

• We obtain six Abelian KM algebras $\{j_n, j_m\} = \kappa n \, \delta_{n+m,0}$

Currents
$$j_n$$
 Levels
$$J_{n0}, J_{0n} \qquad \kappa, -\kappa$$

$$\bar{J}_{n0}, \bar{J}_{0n} \qquad -\kappa, \kappa$$

$$R_{n0}, R_{0n} \qquad \kappa, \kappa$$

- Non vanishing mixed brackets: $\{R_{n0},J_{m0}\}$, $\{R_{0n},\bar{J}_{0m}\} \neq 0$
- Each KM algebra is naturally generated by a current that is a holomorphic or anti-holomorphic function.
- $\{J_{00}, \bar{J}_{00}, R_{00}\}$ span the global Abelian algebra (only two independent in EM)

Beyond U(1) – conformal symmetry

- Conformal plane a realization of conformal symmetry described by Virasoro algebra
- Virasoro algebra obtained from KM algebra using the Sugawara construction [Sugawara 1967]

Beyond U(1) – conformal symmetry

- Conformal plane a realization of conformal symmetry described by Virasoro algebra
- Virasoro algebra obtained from KM algebra using the Sugawara construction [Sugawara 1967]
- Four Virasoro generators $L_n = \frac{1}{2\kappa} \sum_k j_k j_{n-k}$
- Four Virasoro algebras $\{L_n, L_m\} = (n-m) L_{n+m}$
- Quantization introduces a central extension.

Beyond U(1) – conformal symmetry

- Conformal plane a realization of conformal symmetry described by Virasoro algebra
- Virasoro algebra obtained from KM algebra using the Sugawara construction [Sugawara 1967]
- Four Virasoro generators $L_n = \frac{1}{2\kappa} \sum_k j_k j_{n-k}$
- Four Virasoro algebras $\{L_n, L_m\} = (n-m) L_{n+m}$
- Quantization introduces a central extension.
- In progress: Relation to the global 4D Poincaré generators.

Yang-Mills theory

$$I[A] = -rac{1}{4g^2}\int \mathrm{d}^4x \sqrt{\mathfrak{g}}\,F_a^{\mu\nu}F_{\mu\nu}^a$$

Constraints

$$\pi_a^u \approx 0 \,, \quad \chi_a^A \equiv \epsilon \, \pi_a^A - \tfrac{1}{g^2} \, \sqrt{\gamma} \gamma^{AB} \, F_{rB}^a \approx 0 , \quad \chi_a \equiv D_i \pi_a^i \approx 0 \,$$

Yang-Mills theory

$$I[A] = -rac{1}{4g^2}\int \mathrm{d}^4x \sqrt{\mathfrak{g}}\,F_a^{\mu\nu}F_{\mu\nu}^a$$

Constraints

$$\pi_a^u \approx 0 \,, \quad \chi_a^A \equiv \epsilon \, \pi_a^A - \tfrac{1}{g^2} \, \sqrt{\gamma} \gamma^{AB} F_{rB}^a \approx 0, \quad \chi_a \equiv D_i \pi_a^i \approx 0$$

Constraint algebra

$$\begin{cases} \chi_{a}, \chi_{b}' \rbrace &= f_{ab}^{\ c} \chi_{c} \delta^{(3)} \\ \chi_{a}, \chi_{b}'^{A} \rbrace &= f_{ab}^{\ c} \chi_{c}^{A} \delta^{(3)} \\ \chi_{a}^{A}, \chi_{b}'^{B} \rbrace &= \Omega_{ab}^{AB}(x, x')$$

• Non-Abelian symplectic matrix

$$\Omega_{ab}^{AB}(x,x') = -\frac{2\epsilon}{g^2} \sqrt{\gamma} \gamma^{AB} \left(g_{ab} \partial_r + f_{abc} A_r^c \right) \delta^{(3)}$$

Zero mode

$$\partial_r V_A = -[A_r, V_A] \quad \Rightarrow \quad V_A(x) = U^{-1} V_{(0)A}(y) U,$$
 with $U = \exp\left(-\int_r^\infty \mathrm{d} r \, A_r\right)$ and the bdy. condition $V_A|_{r \to \infty} = V_{(0)A}(y)$

• Zero mode

$$\partial_r V_A = -[A_r, V_A] \quad \Rightarrow \quad V_A(x) = U^{-1} V_{(0)A}(y) U,$$
 with $U = \exp\left(-\int_r^\infty \mathrm{d} r \, A_r\right)$ and the bdy. condition $V_A|_{r \to \infty} = V_{(0)A}(y)$

Charges

$$Q[\theta] = -\oint \mathrm{d}^2 y \, heta^a \pi_a^r$$
, $Q_s[\eta] = rac{1}{g^2} \oint \mathrm{d}^2 y \, \sqrt{\gamma} \, \eta_A^a A_a^A$

Local transformations

$$\begin{split} \delta_{\theta,\eta}A_u^a &= \theta_u^a & \delta_{\theta,\eta}A_r^a = -D_r\theta^a \\ \delta_{\theta,\eta}A_A^a &= -D_A\theta^a + \epsilon\,\eta_A^a \end{split}$$

Zero mode

$$\partial_r V_A = -[A_r, V_A] \quad \Rightarrow \quad V_A(x) = U^{-1} V_{(0)A}(y) U,$$
 with $U = \exp\left(-\int_r^\infty \mathrm{d} r \, A_r\right)$ and the bdy. condition $V_A|_{r \to \infty} = V_{(0)A}(y)$

Charges

$$Q[\theta] = -\oint \mathrm{d}^2 y \, \theta^a \pi_a^r$$
, $Q_s[\eta] = \frac{1}{g^2} \oint \mathrm{d}^2 y \, \sqrt{\gamma} \, \eta_A^a A_a^A$

Local transformations

$$\begin{split} \delta_{\theta,\eta} A_u^a &= \theta_u^a \qquad \delta_{\theta,\eta} A_r^a = -D_r \theta^a \\ \delta_{\theta,\eta} A_\Delta^a &= -D_A \theta^a + \epsilon \, \eta_\Delta^a \end{split}$$

Non-Abelian charge algebra

Mode algebra

$$\left\{ G_{nm}^{a}, G_{kl}^{b} \right\} = f_{c}^{ab} G_{n+k,m+l}^{c}$$

$$\left\{ G_{nm}^{a}, S_{kl}^{b} \right\} = f_{c}^{ab} S_{n+k,m+l}^{c} + \kappa n g^{ab} \delta_{n+k,0} \delta_{m+l,0}$$

$$\left\{ G_{nm}^{a}, \bar{S}_{kl}^{b} \right\} = f_{c}^{ab} \bar{S}_{n+k,m+l}^{c} + \kappa m g^{ab} \delta_{n+k,0} \delta_{m+l,0}$$

- Level $\kappa = \frac{4\pi^2}{g^2}$
- One can apply the Sugawara method again...

Mode algebra

$$\begin{cases}
G_{nm}^{a}, G_{kl}^{b} \} &= f_{c}^{ab} G_{n+k,m+l}^{c} \\
G_{nm}^{a}, S_{kl}^{b} \} &= f_{c}^{ab} S_{n+k,m+l}^{c} + \kappa n g^{ab} \delta_{n+k,0} \delta_{m+l,0} \\
G_{nm}^{a}, \bar{S}_{kl}^{b} \} &= f_{c}^{ab} \bar{S}_{n+k,m+l}^{c} + \kappa m g^{ab} \delta_{n+k,0} \delta_{m+l,0}
\end{cases}$$

- Level $\kappa = \frac{4\pi^2}{g^2}$
- One can apply the Sugawara method again...
- Symmetries at the asymptotic null boundary, described by KM algebras and Virasoro algebras, are general features of 4D gauge theories

Degrees of freedom count

Degrees of freedom count

• Dirac formula d.o.f. = $N - N_{1^{st}class} - \frac{1}{2} N_{2^{nd}class}$

Olivera Mišković - February 2023

Degrees of freedom count

- Dirac formula d.o.f. = $N N_{1^{st}class} \frac{1}{2} N_{2^{nd}class}$
- Electromagnetism

$$egin{array}{cccc} A_{\mu} & N=4 \ \pi^u, \ \chi=\partial_i\pi^i & N_{1^{st}class}=2 \ \chi_A & N_{2^{nd}class}=2 \end{array}$$

• d.o.f. = $4 - 2 - \frac{1}{2}2 = 1$

Degrees of freedom count

- Dirac formula d.o.f. = $N N_{1^{st}class} \frac{1}{2} N_{2^{nd}class}$
- Electromagnetism

$$\begin{array}{ccc} A_{\mu} & N=4 \\ \pi^{u}, \ \chi=\partial_{i}\pi^{i} & N_{1^{st}class}=2 \\ \chi_{A} & N_{2^{nd}class}=2 \end{array}$$

• d.o.f. = $4 - 2 - \frac{1}{2}2 = 1$ **WRONG!!** d.o.f. = 2

Degrees of freedom count

- Dirac formula $d.o.f. = N N_{1^{st}class} \frac{1}{2} N_{2^{nd}class}$
- Electromagnetism

$$egin{array}{cccc} A_{\mu} & N=4 \ \pi^{u}, \; \chi=\partial_{i}\pi^{i} & N_{1^{
m st}{
m class}}=2 \ \chi_{A} & N_{2^{nd}{
m class}}=2 \ \end{array}$$

- d.o.f. = $4 2 \frac{1}{2}2 = 1$ **WRONG!!** d.o.f. = 2
- The Dirac formula is applicable only when the multipliers are either arbitrary (1st class constraints) or fully determined (2nd class constraints).
- It fails when the multipliers satisfy a differential equation.
- In the nul foliation: $\partial_r \lambda^A = f^A \quad \Rightarrow \quad \lambda^A = \Lambda^A(y) + \bar{\lambda}^A$

Asymptotic conditions

- Invariance of boundary conditions under Poincaré transformations is not straighforward
- Hamiltonian treatment at spatial infinity needs additional parity conditions to ensure invariance under boosts
- Electromagnetism [Henneaux, Troessaert 2018]
- Yang-Mills [Tanzi, Giulini 2020]
- Null-slices foliated standard b.c. in electromagnetism are invariant under Poincaré group. [Bunster, Gomberoff, Pérez 2018]
- We showed the Poincaré invariance in the non-Abelian case.

Poincaré transfromations

- We found several Kac-Moody algebras, but not all of them are related to the global Poincaré symmetry in 4D spacetime.
- We constructed a generator of 4D Poincaré transformations and its action at the light front, by writing the YM stress tensor in the canonical form,

$$T^{\mu}_{\ \nu} = rac{1}{g^2}\,\left(F^{\mu\alpha}_aF^a_{\nu\alpha} - rac{1}{4}\,\delta^{\mu}_{
u}\,F^{lphaeta}_aF^a_{lphaeta}
ight)$$

We are working on showing its relation with the Virasoro generators.

Poincaré transfromations

- We found several Kac-Moody algebras, but not all of them are related to the global Poincaré symmetry in 4D spacetime.
- We constructed a generator of 4D Poincaré transformations and its action at the light front, by writing the YM stress tensor in the canonical form,

$$T^{\mu}_{\ \nu} = \frac{1}{g^2} \left(F^{\mu\alpha}_a F^a_{\nu\alpha} - \frac{1}{4} \, \delta^{\mu}_{\nu} \, F^{\alpha\beta}_a F^a_{\alpha\beta} \right)$$

We are working on showing its relation with the Virasoro generators.

To be done

- Hamiltonian treatment of the gravitational action using the null foliation.
- · Description of a holographic theory.
- Addition of the θ -term in the action (Pontryagin topological invariant with the couplig θ), which will change the central charges.

Olivera Mišković - February 2023 Light front EM (PUCV)

Acknowledgments

THANK YOU!

Olivera Mišković - February 2023

THANK YOU!

Fondecyt Fondo Nacional de Desarrollo Científico y Tecnológico

HOLOGRAPHYCL

Acknowledgments

Anillo Grant ANID/ACT210100

Holography and its applications to high energy physics, quantum gravity and condensed matter systems

FONDECYT Grant N° 1190533

Black holes and asymptotic symmetries

Olivera Mišković - February 2023 Light front EM (PUCV) 30 / 30