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Infrared structure of gauge theories

IR region of theories with massless particles in asymptotically flat spaces
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Infrared structure of gauge theories

Motivation

• Hamiltonian treatment of asymptotic symmetries
[Bondi, van der Burg, Metzner 1962; Sachs 1962]

BMS symmetry — infinite-dimensional asymptotic symmetry at the null
boundary of 4D asymptotically flat spacetimes

• Celestial holography
Duality between massless 4D asymptotically flat spacetimes and 2D CFT on
the celestial sphere

• Asymptotic symmetries in electromagnetism and Yang-Mills theory

• 2D realization of soft symmetries in electromagnetism

[He, Mitra, Porfyriadis, Strominger 2014;

Nande, Pate, Strominger 2018]

• Extension to Yang-Mills theory
[Strominger 2014; He, Mitra, Strominger, 2016]
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Infrared structure of gauge theories

Vacuum degeneracy in gauge theories (ω → 0)

⇔ Enhancement of symmetries at the boundary of flat spacetime (r → ∞)

• Goldstone modes, dominant low-energy excitations

• Vacuum state eS [η] |A〉 = |A+ η〉 ⇔ δ |A〉 = η

⇒ Interest in boundary dynamics of light and massless particles
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Infrared structure of gauge theories

What to expect at the null infinity?

• Realisation of a canonical analysis in a null foliation [Dirac 1949]

• The induced metric on a null hypersurface is degenerate

• Double-null foliation = 2+ 2 formalism in GR, complicated symplectic
structure, diffi cult to quantize [d’Inverno, Smallwood 1980]

• Ashtekar variables in GR, simpler symplectic structure, but still diffi cult to
quantize [Ashtekar 1986, 1987]

Peculiarities of the light-front dynamics in the Minkowski space

• Light-cone coordinates x± = x 0±x 3√
2
; Time coordinate u = x−

• Increased number of isometries of the surface u = const. compared to
t = x0 = const. (one more because of degenerated direction)

• Dispersion equation for a massive scalar

p2 = m2 ⇒ Energy E = p− = (p⊥)2+m2

2p+

⇒ Consequences: p+ > 0 and trivial physical vacuum, pµ
vac = 0
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Infrared structure of gauge theories

• Nontrivial effects on the light front are contained in the zero modes
[Yamawaki 1998]

• Boundary conditions in the light front formalism

• Light-cone actions are first order in velocities [Steinhardt 1980]

Kinetic term T = 1
2 (∂φ)2 = φ̇ ∂+φ (∇⊥φ)2

⇒ The canonical momentum π = ∂+φ is not invertible

F New constraint χ ≡ π ∂+φ ≈ 0
F It does not commute with itself, {χ(x),χ(x ′)}u=u ′ = 2∂+δ(x x ′)

⇒ Reduction of the phase space: elimination χ = 0

• Global zero mode in massless theories [Alexandrov, Speziale 2015]

- A massless particle worldline is parallel to the light front hypersurface, not
determined by the initial data

- It has vanishing energy, E = P− → 0 (Fourier momenta P− = 0, P⊥ = 0)
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Global zero mode
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Hamiltonian analysis of electromagnetism in the null
foliation

Null foliated reference frame

• Minkowski metric in D = 4 in the spherical coordinates (t, r , yA)

M4 : ds2 = −dt2 + dr2 + r2dΩ2

S2 : dΩ2 = γAB (y)dyAdyB

• Time coordinate u = t εr , 1 ≤ ε ≤ 1
ε = 1 retarded time
ε = 0 proper time of a massive particle
ε = 1 advanced time

• Coordinates on S2: stereographic projection (θ, ϕ)→ yA = (z , z̄)

z = eiϕ cot θ
2 , z̄ = e−iϕ cot θ

2
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Hamiltonian analysis of electromagnetism in the null
foliation

• Minkowski metric gµν in the coordinates xµ = (u, r , yA):

ds2 = −du2 − 2ε dudr +
(
1− ε2

)
dr2 + r2dΩ2 √

g = r2
√

γ

• S2 metric in the complex coordinates

γAB =

(
0 γz z̄

γz z̄ 0

)
, γz z̄ =

2
(1+z z̄ )2 =

√
γ

Olivera Miškovíc - February 2023 () Light front EM (PUCV) 10 / 30



Hamiltonian analysis of electromagnetism in the null
foliation

• Electromagnetic action in the background gµν

I [A] = − 1
4e2
∫

d4x
√
gF µνFµν (Fµν = ∂µAν − ∂νAµ)

• Canonical momenta πµ = − 1
e2
√
gF uµ

In components: πu = 0 Ȧu ×

πr = r 2
e2
√

γ Fur Ȧr
√

πA = 1
e2
√

γγAB
[
(ε2 1)FuB εFrB

]
ȦB ?

• The limit ε2 → 1 is discontinuous

• The action in the light-cone (ε2 = 1) has an additional constraint
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Hamiltonian analysis of electromagnetism in the null
foliation

In the Bondi reference frame (ε2 = 1)

• Primary constraints πu ≈ 0 , χA ≡ επA − 1
e2
√

γγABFrB ≈ 0

• Total Hamiltonian [Dirac 1964]

HT = e2(πr )2

2r 2
√

γ
+ e2 π̃AπA

2
√

γ +
√

γ

4e2r 2 F̃
ABFAB Au∂iπ

i + λuπu + λA χA

- Hamiltonian multipliers λu(x), λA(x) incorporate constraints

• Canonical Poisson brackets Aµ(x),πν(x ′) u=u ′ = δν
µ δ(3)(x x ′)

• Evolution Φ̇(x) = {Φ(x),HT }
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Hamiltonian analysis of electromagnetism in the null
foliation

Symplectic matrix{
χA(x),χB (x ′)

}
= ΩAB (x , x ′) ≡ − 2ε

e2
√

γγAB ∂r δ
(3)

• If ΩAB is not invertible: χA are first class (generate symmetries)

• If ΩAB is invertible: χA are second class (eliminate redundant fields)

One possibility

• ΩAB is invertible because γAB is invertible ⇒ χA are second class

• Reduced phase space χA = 0 [Goldberg 1991, Majumdar 2022]

Second possibility

• ΩAB is invertible, but its inverse is not unique

- ΩAB is infinite-dimensional matrix and it has zero modes∫
d3x ′ΩABV ′B =

2ε
e2
√

γγAB ∂rVB = 0 ⇒ VB = VB (y)
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Hamiltonian analysis of electromagnetism in the null
foliation

Symplectic matrix{
χA(x),χB (x ′)

}
= ΩAB (x , x ′) ≡ − 2ε

e2
√

γγAB ∂r δ
(3)

• If ΩAB - invertible: χA are first class (generate symmetries)

• If ΩAB - not invertible: χA are second class (eliminate redundant fields)

One possibility

• ΩAB is invertible because γAB is invertible ⇒ χA are second class

• Reduced phase space χA = 0 [Goldberg 1991, Majumdar 2022]

Other possibility

• ΩAB is invertible, but its inverse is not unique

• ΩAB is infinite-dimensional matrix and it has zero modes

⇒ χA(0)(y) is first class constraint (r -independent part of the constraint)
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Hamiltonian analysis of electromagnetism in the null
foliation

Consistency conditions

• Conservation of constraints during their evolution
π̇u = 0 ⇒ χ = ∂iπ

i ≈ 0 (differential Gauss law)

χ̇A = 0 ⇒ differential equation in the multiplier

• The multiplier λA is not fully determined

∂rλA =
εe2
2
√

γ ∂r π̃A
1
2r 2 ∇

BFAB +
εe2
2r 2 ∂B

(
πr√

γ

)
λA = λ̄A +ΛA(y)

• A free function ΛA(y) is due to the zero modes of ΩAB

• λ̄A —determined part of λA
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Hamiltonian analysis of electromagnetism in the null
foliation

Summary of the constraints

Primary constraints: πu , χA = επA − 1
e2
√

γγABFrB

Secondary constraint: χ = ∂iπ
i .

Nature of the constraints

• πu —first class, Au is a multiplier in the Hamiltonian

• χ —first class, differential Gauss law, πi =
√

γ E i

• χA(0) —first class, r -independent part of the constraint

• χA(n) (n ≥ 1) — second class, coeffi cients of the Taylor expansion in 1/r

• We have to expand all the fields asymptotically in the vicinity of the
boundary r = const → ∞.
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Hamiltonian analysis of electromagnetism in the null
foliation

Standard asymptotic conditions of the fields [Strominger 2014]

Au = O(1r ) , Ar = O( 1r 2) , AA = O(r0) ,

πu = 0 , πr = O
(
r0
)
, πA = O( 1r 2)

• Boundary fields: A(0)A , πr(0)

Summary

1st class constraints Parameters Generators Charges

πu , χ = ∂iπ
i θu , θ G [θ] Q [θ]

χA(0) ηA(y) S [η] Qs [η]

• Smeared generators

G [θ] =
∫

d3x θ ∂iπ
i + θuπu

)
standard U(1) symmetry

S [η] =
∫

d3x ηAχA asymptotic symmetry
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A new symmetry generator

• G [θ] generates standard gauge transformations, δAµ = −∂µθ, because it is
satisfied θu = −θ̇ [Castellani 1974]

• New symmetry generator S [η] has an r -independent parameter ηA(y)
(to eliminate χA(n), n ≥ 1 )

• Transformation law of the fields

δθAµ = ∂µθ , δηAµ = ε ηA δAµ

δθπµ = 0 , δηπµ = 1
e2 δ

µ
r
√

γ∇AηA

• Improper transformations: θ(0), ηA

[Benguria, Cordero, Teitelboim 1977]

F ηA acts on the boundary fields only

δηA(0)A = ε ηA , δηA(n)A = 0 , n ≥ 1 (similarly for πr )
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A new symmetry generator

Improved generators and charges

• Improved generators

GQ [θ] = G [θ] +Q [θ] (Q [θ] = surface term)

SQ [η] = S [η] +Qs [η] (Qs [θ] = surface term)

• Differentiability

δGQ [θ] =
∫

d3x
(

δGQ [θ]
δAµ

δAµ +
δGQ [θ]

δπµ δπµ
)

δSQ [η] =
∫

d3x
(

δSQ [η]
δAµ

δAµ +
δSQ [η]

δπµ δπµ
)

• Charges

Q [θ] =
∮

d2y θ πr

Qs [η] = 1
e2
∮

d2y
√

γ ηAAA

- Infinite number of global charges (Laurent coeffi cients).
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A new symmetry generator

Charge algebra

• Reduced phase space: GQ [θ] = Q [θ], SQ [η] = Qs [η]

• Abelian charge algebra

{Q [θ1 ],Q [θ2 ]} = 0

{Qs [η1 ],Qs [η2 ]} = 0

{Q [θ],Qs [η]} = C [θ, η]

• Central charge C [θ, η] = 1
e2
∮

d2y
√

γ ηA∂Aθ 6= 0

• Holographic conjugate pairs on S2 [Donnay,Puhm, Strominger 2019]

{Q [θ],Qs [η]} = C [θ, η] ↔ {q, p} = 1

Q [θ] —conformally soft photon mode

Qs [η] —Goldstone current
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A new symmetry generator

Mode expansion of the charge algebra

• Laurent series

ψ(z , z̄) =
+∞
∑

n=−∞

+∞
∑

m=−∞

ψnm
zn+h z̄m+h̄

• The powers (h, h̄) are related to the spin of the tensor ψ

- Scalars πr : (0, 0)

- Vectors Az : (1, 0), Az̄ : (0, 1)

• Charges

Q [θ] = ∑n,m θnmGnm ∈ R

Qs [η] = ∑n,m (ηnm S̄nm + η̄nmSnm) ∈ R

• Generators

Gnm = 4π2 π1 n,1 m

Snm = 4π2

e2 A−n, m

S̄nm = 4π2

e2 Ā n, m
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A new symmetry generator

• Algebra (non vanishing brackets only)

{Gnm , Skl} = κn δn+k ,0δm+l ,0

{Gnm , S̄kl} = κm δn+k ,0δm+l ,0

• Level of the algebra: κ = 4π2

e2

• Change of the basis: (Gnm ,Snm , S̄nm)→ (Rnm , Jnm , J̄nm)

• Generalization of the Kac-Moody algebra

{Jnm , Jkl} = κ (n m) δn+k ,0δm+l ,0

{J̄nm , J̄kl} = κ (n m) δn+k ,0δm+l ,0

{Rnm , Jkl} = κn δn+k ,0δm+l ,0

{Rnm , J̄kl} = κm δn+k ,0δm+l ,0

{Rnm ,Rkl} = κ (n+m) δn+k ,0δm+l ,0
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A new symmetry generator

Abelian Kac-Moody subalgebras

• We obtain six Abelian KM algebras {jn , jm} = κn δn+m,0

Currents jn Levels

Jn0, J0n κ,−κ

J̄n0, J̄0n −κ, κ

Rn0,R0n κ, κ

• Non vanishing mixed brackets: {Rn0, Jm0} , {R0n , J̄0m} 6= 0

• Each KM algebra is naturally generated by a current that is a holomorphic or
anti-holomorphic function.

• {J00, J̄00,R00} span the global Abelian algebra (only two independent in EM)
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A new symmetry generator

Beyond U(1) —conformal symmetry

• Conformal plane —a realization of conformal symmetry described by Virasoro
algebra

• Virasoro algebra —obtained from KM algebra using the Sugawara
construction [Sugawara 1967]

• Four Virasoro generators Ln = 1
2κ ∑

k
jk jn k

• Four Virasoro algebras {Ln , Lm} = (n m) Ln+m

• Quantization introduces a central extension.

• In progress: Relation to the global 4D Poincaré generators.

Olivera Miškovíc - February 2023 () Light front EM (PUCV) 24 / 30



A new symmetry generator

Beyond U(1) —conformal symmetry

• Conformal plane —a realization of conformal symmetry described by Virasoro
algebra

• Virasoro algebra —obtained from KM algebra using the Sugawara
construction [Sugawara 1967]

• Four Virasoro generators Ln = 1
2κ ∑

k
jk jn−k

• Four Virasoro algebras {Ln , Lm} = (n−m) Ln+m

• Quantization introduces a central extension.

• In progress: Relation to the global 4D Poincaré generators.

Olivera Miškovíc - February 2023 () Light front EM (PUCV) 24 / 30



A new symmetry generator

Beyond U(1) —conformal symmetry

• Conformal plane —a realization of conformal symmetry described by Virasoro
algebra

• Virasoro algebra —obtained from KM algebra using the Sugawara
construction [Sugawara 1967]

• Four Virasoro generators Ln = 1
2κ ∑

k
jk jn−k

• Four Virasoro algebras {Ln , Lm} = (n−m) Ln+m

• Quantization introduces a central extension.

• In progress: Relation to the global 4D Poincaré generators.

Olivera Miškovíc - February 2023 () Light front EM (PUCV) 24 / 30



Extension to Yang-Mills theory

Yang-Mills theory

I [A] = − 1
4g 2
∫

d4x
√
gF µν

a F aµν

• Constraints

πua ≈ 0 , χAa ≡ ε πAa − 1
g 2
√

γγABF arB ≈ 0, χa ≡ Diπia ≈ 0

• Constraint algebra

χa,χ
′
b = f c

ab χc δ(3){
χa,χ

′A
b

}
= f c

ab χAc δ(3){
χAa ,χ

′B
b

}
= ΩAB

ab (x , x
′)

• Non-Abelian symplectic matrix

ΩAB
ab (x , x

′) = 2ε
g 2
√

γγAB (gab ∂r + fabc Acr ) δ(3)
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Extension to Yang-Mills theory

• Zero mode

∂rVA = −[Ar ,VA ] ⇒ VA(x) = U−1V(0)A(y)U,

with U = exp
(
−
∫ ∞
r dr Ar

)
and the bdy. condition VA |r→∞ = V(0)A(y)

• Charges

Q [θ] =
∮

d2y θaπra , Qs [η] = 1
g 2
∮

d2y
√

γ ηaAA
A
a

• Local transformations
δθ,ηAau = θau δθ,ηAar = Dr θa

δθ,ηAaA = DAθa + ε ηaA

• Non-Abelian charge algebra

{Q [θ1 ],Q [θ2 ]} = Q [[θ1, θ2 ]] → Qs is non-Abelian

{Q [θ],Qs [η]} = Qs [[θ, η]] + 1
g 2
∮

d2y
√

γ ηAa ∂Aθa

{Qs [η1 ],Qs [η2 ]} = 0 → Qs is Abelian

Olivera Miškovíc - February 2023 () Light front EM (PUCV) 26 / 30



Extension to Yang-Mills theory

• Zero mode

∂rVA = −[Ar ,VA ] ⇒ VA(x) = U−1V(0)A(y)U,

with U = exp
(
−
∫ ∞
r dr Ar

)
and the bdy. condition VA |r→∞ = V(0)A(y)

• Charges

Q [θ] = −
∮

d2y θaπra , Qs [η] = 1
g 2
∮

d2y
√

γ ηaAA
A
a

• Local transformations
δθ,ηAau = θau δθ,ηAar = −Dr θa

δθ,ηAaA = −DAθa + ε ηaA

• Non-Abelian charge algebra

{Q [θ1 ],Q [θ2 ]} = Q [[θ1, θ2 ]] → Qs is non-Abelian

{Q [θ],Qs [η]} = Qs [[θ, η]] + 1
g 2
∮

d2y
√

γ ηAa ∂Aθa

{Qs [η1 ],Qs [η2 ]} = 0 → Qs is Abelian

Olivera Miškovíc - February 2023 () Light front EM (PUCV) 26 / 30



Extension to Yang-Mills theory

• Zero mode

∂rVA = −[Ar ,VA ] ⇒ VA(x) = U−1V(0)A(y)U,

with U = exp
(
−
∫ ∞
r dr Ar

)
and the bdy. condition VA |r→∞ = V(0)A(y)

• Charges

Q [θ] = −
∮

d2y θaπra , Qs [η] = 1
g 2
∮

d2y
√

γ ηaAA
A
a

• Local transformations
δθ,ηAau = θau δθ,ηAar = −Dr θa

δθ,ηAaA = −DAθa + ε ηaA

• Non-Abelian charge algebra

{Q [θ1 ],Q [θ2 ]} = Q [[θ1, θ2 ]] → Qs is non-Abelian

{Q [θ],Qs [η]} = Qs [[θ, η]] + 1
g 2
∮

d2y
√

γ ηAa ∂Aθa

{Qs [η1 ],Qs [η2 ]} = 0 → Qs is Abelian

Olivera Miškovíc - February 2023 () Light front EM (PUCV) 26 / 30



Extension to Yang-Mills theory

• Mode algebra{
G anm ,G

b
kl

}
= f abc G

c
n+k ,m+l{

G anm , S
b
kl

}
= f abc S

c
n+k ,m+l + κngabδn+k ,0δm+l ,0{

G anm , S̄
b
kl

}
= f abc S̄

c
n+k ,m+l + κmgabδn+k ,0δm+l ,0

• Level κ = 4π2

g 2

• One can apply the Sugawara method again...

• Symmetries at the asymptotic null boundary, described by KM algebras and
Virasoro algebras, are general features of 4D gauge theories
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Discussion

Degrees of freedom count

• Dirac formula d.o.f. = N −N1st class − 1
2 N2nd class

• Electromagnetism Aµ N = 4
πu , χ = ∂iπ

i N1st class = 2
χA N2nd class = 2

• d.o.f. = 4− 2− 1
2 2 = 1 WRONG!! d.o.f. = 2

• The Dirac formula is applicable only when the multipliers are either arbitrary
(1st class constraints) or fully determined (2nd class constraints).

- It fails when the multipliers satisfy a differential equation.

- In the nul foliation: ∂rλ
A = f A ⇒ λA = ΛA(y) + λ̄

A
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Discussion

Asymptotic conditions

• Invariance of boundary conditions under Poincaré transformatons is not
straighforward

• Hamiltonian treatment at spatial infinity needs additional parity conditions
to ensure invariance under boosts

- Electromagnetism [Henneaux, Troessaert 2018]

- Yang-Mills [Tanzi, Giulini 2020]

• Null-slices foliated standard b.c. in electromagnetism are invariant under
Poincaré group. [Bunster, Gomberoff, Pérez 2018]

• We showed the Poincaré invariance in the non-Abelian case.
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Discussion

Poincaré transfromations

• We found several Kac-Moody algebras, but not all of them are related to the
global Poincaré symmetry in 4D spacetime.

• We constructed a generator of 4D Poincaré transformations and its action at
the light front, by writing the YM stress tensor in the canonical form,

T µ
ν =

1
g 2

(
F µα
a F aνα − 1

4 δ
µ
ν F

αβ
a F aαβ

)
• We are working on showing its relation with the Virasoro generators.

To be done

• Hamiltonian treatment of the gravitatonal action using the null foliation.

• Description of a holographic theory.

• Addition of the θ-term in the action (Pontryagin topological invariant with
the couplig θ), which will change the central charges.
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